Kinetic magnetic-field effect involving the small biologically relevant inorganic radicals NO and O2(·-).

نویسندگان

  • Tatiana Y Karogodina
  • Igor G Dranov
  • Svetlana V Sergeeva
  • Dmitry V Stass
  • Ulrich E Steiner
چکیده

Oxidation of dihydrorhodamine 123 (DHR) to rhodamine 123 (RH) by oxoperoxonitrite (ONOO(-)), formed through recombination of NO and O(2)(·-) radicals resulting from thermal decomposition of 3-morpholinosydnonimine (SIN-1) in buffered aerated aqueous solution at pH 7.6, represents a kinetic model system of the reactivity of NO and O(2)(·-) in biochemical systems. A magnetic-field effect (MFE) on the yield of RH detected in this system is explored in the full range of fields between 0 and 18 T. It is found to increase in a nearly linear fashion up to a value of 5.5±1.6 % at 18 T and 23 °C (3.1±0.7 % at 40 °C). A theoretical framework to analyze the MFE in terms of the magnetic-field-enhanced recombination rate constant k(rec) of NO and O(2)(·-) due to magnetic mixing of T(0) and S spin states of the radical pair by the Δg mechanism is developed, including estimation of magnetic properties (g tensor and spin relaxation times) of NO and O(2)(·-) in aqueous solution, and calculation of the MFE on k(rec) using the theoretical formalism of Gorelik at al. The factor with which the MFE on k(rec) is translated to the MFE on the yield of ONOO(-) and RH is derived for various kinetic scenarios representing possible sink channels for NO and O(2)(·-). With reasonable assumptions for the values of some unknown kinetic parameters, the theoretical predictions account well for the observed MFE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow simulation of gallium in a cylindrical annulus in the presence of a magnetic field for improving the casting process

Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and...

متن کامل

Computational Model of Reaction Mechanism of Alkyl Peroxy Radicals with Organic Compounds in the Presence and Absence of Oxygen

On the basis of experimental data a kinetic model for the heterogeneous interaction between alkylperoxyradicals and organic compounds in Langmuir- Hinshelwood approach at room temperature has been offered.The effect of oxygen on the kinetics of process in the presence, [O2]o = 1 x 1011 – 1.6 x 1012 molecules.cm-2, and absence of oxygen has been analyzed. Over time the chain degenerate branching...

متن کامل

Effects of magnetic fields on the seed germination and metabolism in two specious of Almond

During the past decade considerable evidence has been accumulated with regard to the biological effects, both in vivo and in vitro, of extremely low frequency electric and magnetic fields, such as those originating from residentially proximate power lines, household electrical wiring and diagnostic apparatus and therapy devices. Also, during the evolution process, all living organisms experienc...

متن کامل

Effect of Magnetic Field on Torsional Waves in Non-Homogeneous Aeolotropic Tube

The effect of magnetic field on torsional waves propagating in non-homogeneous viscoelastic cylindrically aeolotropic material is discussed. The elastic constants and non-homogeneity in viscoelastic medium in terms of density and elastic constant is taken. The frequency equations have been derived in the form of a determinant involving Bessel functions. Dispersion equation in each case has been...

متن کامل

Magnetic nanobeads: Synthesis and application in biomedicine

Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2011